Robust Shift Detection in Time-Varying Autoregressive Processes
نویسندگان
چکیده
منابع مشابه
Spatially Varying Autoregressive Processes
Spatially Varying Autoregressive Processes Aline A. Nobre, Bruno Sansó and Alexandra M. Schmidt Scientific Computing Program, Oswaldo Cruz Foundation, Rio de Janeiro-RJ CEP:21.045-900, Brazil Department of Applied Mathematics and Statistics, University of California at Santa Cruz, Santa Cruz, CA 95064 Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ CEP:21.945-...
متن کاملBayesian inference of time varying parameters in autoregressive processes
In the autoregressive process of first order AR(1), a homogeneous correlated time series ut is recursively constructed as ut = q ut−1 + σ t, using random Gaussian deviates t and fixed values for the correlation coefficient q and for the noise amplitude σ. To model temporally heterogeneous time series, the coefficients qt and σt can be regarded as time-dependent variables by themselves, leading ...
متن کاملOn Recursive Estimation for Locally Stationary Time Varying Autoregressive Processes
This paper focuses on recursive estimation of locally stationary autoregressive processes. The stability of the model is revisited and uniform results are provided when the time-varying autoregression parameters belong to appropiate smoothness classes. An adequate normalization for the correction term used in the recursive estimation procedure allows for very mild assumptions on the innovations...
متن کاملComparing Time-Varying autoregressive Structures of Locally Stationary Processes
In this paper a novel statistical test is introduced to compare two locally stationary time series. The proposed approach is a Wald test considering time-varying autoregressive modelling and function projections in adequate spaces. The covariance structure of the innovations may be also time-varying. In order to obtain function estimators for the time-varying autoregressive parameters, we consi...
متن کاملNonlinear Wavelet Estimation of Time-varying Autoregressive Processes
We consider nonparametric estimation of the parameter functions a i () , i = 1; : : : ; p , of a time-varying autoregressive process. Choosing an orthonormal wavelet basis representation of the functions a i , the empirical wavelet coeecients are derived from the time series data as the solution of a least squares minimization problem. In order to allow the a i to be functions of inhomogeneous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Austrian Journal of Statistics
سال: 2016
ISSN: 1026-597X
DOI: 10.17713/ajs.v37i1.285